Visualisation for communication


“Will it rain today?”
“How long do I have to wait for my bus?”
“Is the road from the bus stop to my home well lit?”

We are increasingly exposed to sensing and prediction in our daily lives. Uncertainty is both inherent to these systems and usually poorly communicated. To design data presentations that non-experts can understand and take decisions on, we must study how users interpret their data and what goals they have for it. This informs the way that we should communicate results from our models, and visualise qualitative features of the data, which in turn determines what models we must use in the first place.

Visualisation is the actual process of mapping the data to visuals for easy communication. The viewer’s interpretation of a visual is the final stage of visualisation, after which the viewer may decide how to consume the visualisation.

Most viewers consume the visualisation with either of the following two goals in mind:
– gaining new insight into the data represented in the visual, or
– gaining a better understanding of the real phenomena itself.

Often a trial-and-error approach leads to finding the most expressive and effective (graphically articulate) visualisation. Yes, the trial-and-error design process involves developing the visualisation in accordance with the already established theory and principles and user study with an iterative design process where the actual user is kept in the loop.

However, the value of a visual for the purpose of a particular interpretation is not obvious to the viewer before its use for interpretation. The same visual might bring about new insights to one user, but not to another; the same visual might be effective for one problem, but not for another; the same animation might be adequate to understand a problem on one type of hardware, but not on another.

In order to generate the most meaningful visualisation for a specific instance, a careful mapping process from “data to visuals” is necessary. And it will vary a great deal depending upon the preconceived knowledge of the users, their mental models, and the design of the visualisation, among other factors.
The “user model” describes the collective information the system has of a particular user.

A visualisation is subjectively interpreted by the viewer in dependency of past experiences, education, gender, culture, situation, and individual limitations, abilities, and requirements. For instance, colour-deficient viewers are limited in interpreting colour pictures; a person with deficient fine motor skills will have problems accurately pointing at small objects on the screen. In order to create a user model, the system needs to learn facts about the user. Most of these facts can be extracted from observing the user perform special tasks.

A complete user model evolves in several stages, whereby each style of user modelling is being used. Typically, the extraction of information starts with explicit modelling to inquire about gender, age, or education. Subsequently, the user has to complete special tasks that reveal the limitations of his/her vision and/or preferences. By continuously observing the user in his/her use of the visualisation system, the user model can be improved over time. Significant information of the user model is expected from the completion of special tasks.

Visualisation of 8495 railway stations in India

Mobile app prototype to communicate uncertainty in the public transport’s real-time and timetable information to commuters in Melbourne

 

 

 

 

 

 

 

 

 

 

 

 

 

I work on a research project titled, ‘Deep User Models for Visual Analytics’. With an aim to understand how to communicate the uncertainty to non-experts who have no technical background and also at the same time maintaining the relevance of the project for domain experts we built our first study around the public transport in Melbourne, Australia. Through this project, we are trying to understand the Perception of Visual Uncertainty Representation by Non-Experts. The motivation is that understanding and communicating uncertainty and sensitivity information is difficult; uncertainty is part of everyday life for any type of decision-making process, and some of the previous studies done are unclear and could be improved.

The question we tried to answer is: Can we build visualisations of uncertainty distributions (specifically, public transport arrival times) that people understand? More specifically, our study investigated whether a particular visualisation of uncertainty information in predicting the arrival time of one bus and the departure of another could be used to help people make a transfer, but will involve a more complex visualisation.

We are looking at how to tune models to people’s error preferences in a simple, lightweight way. It is not enough to add an effective visualisation on the existing models. Even an effective representation of uncertainty, in this case, might not be optimal if the model is not tuned to reflect people’s error preferences. Given known costs for each type of error, cost-sensitive classification can be employed to fit a model that makes predictions that reflect error preferences.

Our first study related to designing a transit mobile application for public transport in Melbourne, tries to help commuters make transfers among various modes (bus, train, and tram) by making use of visualisation to communicate the associated uncertainty in arrival and departure times. The findings from this study will help design user facing applications can leverage the power of visualisation to communicate uncertainty information to non-experts.

Our planned second study, will try to build user models in an attempt to understand how non-experts and experts perceive visualisations in their daily life. The findings from this study will help us come up with guidelines for designing visualisations that people can understand and then take effective decisions.

We, graduate research scholars of the IITB-Monash Research Academy, study for a dually-badged PhD from IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. The Academy is a collaboration between India and Australia that endeavours to strengthen relationships between the two countries. According to its CEO, Prof Murali Sastry, “The IITB-Monash Research Academy was conceived as a unique model for how two leading, globally focused academic organisations can come together in the spirit of collaboration to deliver solutions and outcomes to grand challenge research questions facing industry and society.”

He is right! Visualisations are often targeted for experts in a domain. I have always been fascinated by how a good visualisation design can help us understand the underlined information, trigger an emotion, and guide us in taking an informed decision. This project offered me a chance to develop a deep understanding of how visualisations are perceived by the people. This will guide the designer leverage the power of visualisations to communicate complex phenomena to people.

Research scholar: Amit Jena, IITB-Monash Research Academy

Project title: Deep User Models for Visual Analytics

Supervisors: Prof. Venkatesh Rajamanickam, Prof. Tim Dwyer, Dr. Ulrich Engelke, Dr. Cecile Paris

Industry Supervisors: Dr. Ulrich Engelke and Dr. Cecile Paris, Data61 CSIRO

Contact details: amit.jena@monash.edu

The above story was written by Amit Jena. Copyright IITB-Monash Research Academy.

 

Demand for Cash: An Econometric Study for India


Why do we use cash? This project assesses the factors affecting the persistent demand for currency (banknotes) in India. Past work in this domain has looked at factors such as interest rates set by the central bank, price levels, and growth of newer ways to make payments.

However, in the Indian context, policies such as demonetization were motivated by the use of cash in the ‘shadow’ economy, as well as counterfeit currency. We wish to examine whether this rationale is backed adequately by data; i.e. whether use of cash in India is indeed associated with payments and transactions outside the formal economy. To establish this, we need both an overall understanding of currency demand (using macroeconomic or economy-wide data) as well as individual-level data (i.e. how people like you and I use cash in our daily lives).

Currency to GDP ratio across countries. Source Rogoff (2016)

Economic theory suggests that people hold cash for two primary reasons: to complete payments for goods and services (transactions), and to store them for future use (store of value). The demand for cash has been traditionally studied using empirical models that make use of time-series data at the level of the entire economy, rather than at the level of the individual or household. The most common econometric model accounts for long-term changes in currency associated with economic factors, and specifically proposes how strong the relationships between these factors might be using statistical methods. More recently, central banks have collected data from individuals and merchants on their methods of payments as well as the cash that they store for contingency purposes.

With such data, recent studies study technological and financial factors such as distance to nearest automated teller machines (ATMs), banking density, and surcharges for credit or debit card payments on cash use can be accounted for. However, very little research of this kind has been done in developing economies, especially India. Although a few currency demand studies (Nachane et al., 2013; Bhattacharya and Joshi, 2001) look at these issues in the Indian context, there is no data for conducting a microeconomic analysis. The Reserve Bank of India’s (RBI) policies related to managing cash, are thus currently unable to take this into account. Thus, one of the major evidence gaps relates to understanding India-specific factors that could affect the demand for cash.

A study of currency demand in India offers several opportunities to look at economic, social, and behavioural factors specific to India that have been previously unexplored. Given that cash appears to have value to individuals beyond simple financial reasons (e.g. gifts for festive occasions are typically made out in cash), India is ripe for a study of cash demand beyond what we currently know. This area also offers a way to inform future currency management policies (e.g. demonetization, introduction of new banknotes), as well as policies on developing payment systems in India. For instance, richer economies such as Australia and Canada make use of “contactless” payment cards (no authentication via PIN required), whereas such technology is yet to catch up in India.

Finally, understanding the importance of the quality of a banknote (longevity, endurance to wear and tear such as writing, tearing, crumpling common in India) is often underplayed when discussing the demand for cash. Thus, the project offers a look at both sides of the cash story: supply and demand.

Why does this matter for India? Our project will be the first in a developing country context (especially India) to empirically assess the economy-wide as well as the individual-level demand for cash, and examine the supply side issues in enabling sustainable currency use in India. We expect to produce a first-of-its-kind public-use data on payment methods used by individuals in urban India, empowering policymakers and academics researchers alike to explore further the current state of payment mechanisms and cash usage in India. The RBI’s Vision 2018 for Payments was suggested in light of the demonetization policy and would be informed by findings from our microeconomic analysis. Thus, both key components of the project (demand and supply) will address emerging needs and policy trends of the Reserve Bank of India.

So far, we have some findings from analysis that aim at uncovering newer insights on currency demand in the Indian context. At both the national and individual level, we find that growth of debit and credit cards, and electronic means of payment affect the demand for cash in India. Cash remains the most preferred mode of payment, but it is less used when other ways to pay are accepted. Similar to other countries, preliminary analysis show that smaller-value banknotes (Rs. 10, Rs. 20) circulate for a smaller period of time compared to larger notes (e.g. Rs. 500).

More technically, our aggregate model of currency demand finds that high-value currency in circulation is inelastic to growth of alternate payment instruments. Informality in the economy is associated with greater currency demand. Our micro analysis suggests that contextual factors do not significantly affect cash held, but that the size and purpose of the transaction, whether merchants accepted non-cash alternatives, and perceptions of usefulness of cash all affected the preference for cash as a means of payment. There are also additional behavioural factors such as the justification of tax evasion and trust that could vary significantly with cash held or preference for cash payments.

We, graduate research scholars of the IITB-Monash Research Academy, study for a dually-badged PhD from IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. The Academy is a collaboration between India and Australia that endeavours to strengthen relationships between the two countries. According to its CEO, Prof Murali Sastry, “The IITB-Monash Research Academy was conceived as a unique model for how two leading, globally focussed academic organisations can come together in the spirit of collaboration to deliver solutions and outcomes to grand challenge research questions facing industry and society.”

He was bang on target. As an economist in training, my interest comes from understanding how people behave and react to changes in their environment. This project offered me a chance to examine something that is typically done using aggregate data and a “rational human” framework, but often has rich socio-cultural context (especially in India). It was also a challenge for me as I have previously only worked with microeconomic data and research problems.

Research scholar: Anirudh Tagat, IITB-Monash Research Academy

Project title: Demand for Cash: An Econometric Study for India

Supervisors: Prof Pushpa L Trivedi, Prof Greg Markowsky, and Prof Mehmet Özmen

Contact details: anirudh.tagat@monash.edu

The above story was written by Anirudh Tagat. Copyright IITB-Monash Research Academy.

(Additional data collection for this project was supported via a grant award by the National Council for Applied Economic Research (NCAER), and the School of Mathematics, Monash University.)

 

 

 

 

Lining landfills to keep the environment healthy


Why do we need landfills?

“Not all waste can be recycled. Engineered landfills are an environmentally responsible way to dispose waste which is not recyclable,” explains Neeraja V. S., a researcher with the IITB-Monash Research Academy, who is working on a project titled, ‘Thermo-hydro-mechanical behavior of geosynthetic clay liners in landfill cover systems’.

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Neeraja study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Unregulated landfill or waste dump, poses harm to environment

Waste containment facilities form part of critical infrastructure that provides essential community services. In most cases, these facilities are designed to ensure negligible long-term environmental and human health impact.

Says Neeraja, “To achieve these aims, barrier systems need to be constructed, which effectively separates the waste and the associated leachate and biogas from the groundwater system and the atmosphere, respectively. One conventional approach to barrier systems has been to construct a ‘resistive barrier’ composed of a capping liner that reduces water ingress into the landfill and controls biogas escape into the atmosphere, as well as base liner having a low saturated permeability which minimises leachate migration out of the landfill.”

“Over the past decade,” she adds, “geosynthetic clay liners (GCLs) have become one of the dominant construction materials in landfills and have gained widespread acceptance for use in capping systems. GCLs typically comprise a thin layer of bentonite sandwiched between two layers of geotextile with the components being held together by needle-punching or stitch bonding. Once on-site, the GCL is unrolled in strips (panels), the panels overlapped without mechanical welding and self-seal at the overlaps when the bentonite hydrates.”

Schematic diagram showing basic components of an engineered landfill; GCL is an important component in cover layer

Neeraja’s project involves assessing the thermo-hydro-mechanical behaviour of the GCLs in waste management applications. The GCLs in cover system need to be kept hydrated to act as barrier, but on the field they are subjected to wet-dry cycles due to atmospheric exposure, and this impairs their performance. She plans to examine the long-term performance of GCLs with polymer bentonite, when subjected to daily cycles of temperature variation. The effect of wet-dry cycles on GCLs with different types of polymer bentonite have been studied by a few researchers but their long-term performance has not been ascertained well.

Says Prof Murali Sastry, CEO of the Academy, “The IITB-Monash Research Academy represents an extremely important collaboration between Australia and India. Established in 2008, the Academy now is a strong presence in the context of India-Australia scientific collaborations. In today’s scenario municipal solid waste management is an alarming issue in both countries, and engineered landfills are an inevitable part of the solution. Neeraja’s project targets an entirely new and emerging area where very limited research has been carried out. We wish her all success.”

Research scholar: Neeraja V. S., IITB-Monash Research Academy

Project title: Thermo-hydro-mechanical behavior of geosynthetic clay liners in landfill cover systems

Supervisors: Prof. B. V. S. Viswanadham, Prof. Abdelmalek Bouazza

Contact details: neeraja.vs@monash.edu

This story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and the IITB-Monash Research Academy. Copyright IITB-Monash Research Academy

Extracting high-quality protein from plant-based sources


With the world population slated to touch 10 billion by 2050, one of the main challenges we face is the production and supply of food. However, food security must be concordant with nutrition security. Of all the macro-nutrients, protein has garnered much attention over the last decade. The reliance on meat as the major source of protein is not sustainable in the future; it has become imperative that we look at sustainable, natural alternatives of protein; derived from plants.

The current methods of production of food proteins employ harsh chemicals like acids, and alkalis to extract protein from biomass. These affect not only the quality of the protein, but also damage the environment owing to toxic effluents. Moreover, there is a dearth of biomass and raw materials (with respect to plants), which can yield protein comparable to meat.

Figure 1: (A) represents the different cultivars of Peanuts across the world. Peanut kernels are crushed in oil mills to obtain oil, and the residue is known as Oil-Cake (B). Oil-Cakes are excellent sources of proteins.

The IITB-Monash Research Academy — where I have enrolled for a PhD project titled, ‘High-Quality Protein Extraction from Plant-based Sources’ — is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars in this Academy study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. I am supported by Department of Biotechnology (DBT), India.

My research aims at the extraction and production of protein hydrolysates from peanut oilcakes. Meat production is slated to increase over the next two decades. Meat production is linked to increased production of greenhouse gases, increased water use, loss of habitat, and soil degradation. Massive use of antibiotics has also increased the threat of zoonoses (diseases which can be transmitted to humans from animals). Hence, it becomes important to identify new biomass sources, from which protein can be extracted in a sustainable manner. Peanut oil cake is one such biomass, which is found in abundance in India. It is also a rich source of protein. Similar types of biomass can be found across the world, for instance, Canola Oilcake in Australia.

One of the driving factors therefore is to objectively analyze the possibility of extracting high-quality proteins from under-utilized biomass such as oilcakes. The other motivation is to develop a bio-process technique, which is sustainable, economical, and does not damage the environment. These motives form the base of the current research.

I plan to use proteolytic enzymes (enzymes which can cut big protein molecules) to separate and extract the proteins from the oilcakes. The process yields high-quality protein (protein hydrolysates), having excellent functional properties, while leaving the carbohydrates behind. By virtue of being hydrolysates, they are more amenable to digestion and biosorption in humans. The process does not employ any harsh chemicals, thereby preserving the quality of the protein.

Figure 2: (A) is the powdered peanut oil-cake, which is treated with proteolytic enzymes. The raw material can be separated into three fractions (B), mainly lipid-rich fraction (C), Protein-rich fraction (D), and Insoluble carbohydrate-rich fraction(E). The Lipid fraction can be purified to obtain peanut oil(F). The GC profile of the oil (G) shows that it is rich in monounsaturated fatty acids. The protein fraction is purified and freeze-dried to obtain final protein hydrolysate powder(H). (I) represents SEM image of protein hydrolysate

Protein plays a major role in all living cells. If a living cell can be compared to an automobile, then the carbohydrates are the fuel on which the cell thrives; the lipids become the reserve fuel; and the proteins encompass the core body of the cell.

The sustainable production of protein hydrolysates is of immense interest to the food and nutrition industries. Hydrolysates are protein molecules which are broken down into smaller peptides and display excellent functional properties. Based on the amino acid content, these hydrolysates can be incorporated into various food-based formulations (beverages, powders, biscuits, etc.). Hydrolysates which lack essential amino acids can be considered for non-nutritional purposes (adhesives, films, coatings, etc). The hydrolysates can also possess bioactivity (anti-diabetic, anti-oxidant), which makes them interesting candidates for the nutraceutical industries.

Figure 3: MALDI-TOF spectra for Protein Hydrolysates (A, and C), compared to native protein extracted via commercial techniques (B, and D). Lower molecular weight peptides are obtained in enzyme-treated samples, whereas they are absent in native protein (control). Higher molecular weight peptides are not obtained in enzyme-treated samples, whereas they are present in native protein (control).

One of the main advantages of using peanut oilcake is that the raw material is cheap, and easily available throughout the year. The other advantage is the presence of essential amino acids in the raw material.

In the current project, proteolytic enzymes have been used to extract proteins from peanut oilcakes. This work will be instrumental in developing a process for cheap and efficient production of protein hydrolysates from easily available biomass. The process is green, sustainable, and seeks to decrease the over-reliance on meat as the major source of protein. Apart from protein, the insoluble carbohydrates are a good source of dietary fibre. The oil in the oilcakes is easily separated and can be purified for further uses.

I feel that two of the greatest challenges we face are climate change and supply of nutritious food for the ever-growing population. Climate change must be tackled on multiple fronts and reducing the production of meat has often been cited as one of the solutions. However, the end consumer does not have equivalent alternatives to meat. I believe that this project will contribute towards tackling the issue.

Says Prof Murali Sastry, CEO of the IITB-Monash Research Academy, “Due to lack of quality protein in diets, malnutrition among children is a huge problem in developing nations. The work by researchers like Subramoni Hariharan can go a long way in improving millions of lives. We wish him all success.”

Research scholar: Subramoni Hariharan, IITB-Monash Research Academy

Project title: High-Quality Protein Extraction from Plant-based Sources

Supported by: Department of Biotechnology (DBT), Government of India

Supervisors: Prof. Amit Y Arora (IIT-B), Prof Antonio F Patti (Monash)

Contact details: subramoni.hariharan@monash.edu

The above story was written by Subramoni Hariharan. Copyright IITB-Monash Research Academy.

Big design interventions for small farmers


Small and marginal farmers, those with landholding smaller than 2 hectares, play an essential role in the Indian agrarian economy. Almost 50 % (about half a million) of the Indian population depends on agriculture for employment and livelihood. Small and marginal size farms form 86.21 % of total agricultural landholding, according to Agriculture Census Division 2018. Along with other issues like climate change, lack of resources, and awareness, these farmers are unable to afford modern farm machinery and tools, which affects their yields adversely. This inability to use modern solutions stems from lack of capital, rising labour cost, inflation, and scarcity of appropriate technology.

A design research methods approach has been used to investigate the problems these farmers face. It would be worthwhile to try and ameliorate the issues of small farmers by applying principles of industrial design and appropriate technology. This got me interested in the research project titled, ‘Design intervention in farm equipment for small Indian farmers’. As graduate research scholars of the IITB-Monash Research Academy, we study for a dual-badged PhD from IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. The Academy is a collaboration between India and Australia that endeavours to strengthen academic relationships between the two countries.

The research aims at designing and developing appropriate, affordable, context-specific solutions for small Indian farmers. Ideally, the tools developed from this research would help in improving yield while reducing long term costs and drudgery of agricultural labour. The framework developed to design these tools would also ideally help other researchers, designers and engineers to work more effectively in the farming domain. In the long run, the research also aims at improving the livelihood of small farming households while improving food security for the country.

India is known for its diversity. This diversity also reflects in the agricultural domain where the land condition, climate, crops, farming techniques and methods vary across the country. We started with formal research through what is present in the published literature. Initially, we decided to limit the scope of the study to rice farming and focus specifically on different stages and the tools used. We prepared a mind map and morphological representation of how rice farming activity is carried out through different stages. The enormous amount of data from various sources was represented visually in different layers. These overlays and the mind map made a strong reference point for further studies.

Next, we needed to confirm on the ground what we had studied in the literature and texts. So we decided to conduct a workshop at a Small scale farmers’ meet at Dharakwadi village where we used the mind map of tools used at different activities of rice farming. The workshop helped us in understanding farmers needs vis-a-vis currently available tools. We also visited Amale village in Thane district to understand and consolidate the needs and wants through observation and informal discussions with the farmers. These needs were then mapped as an overlay onto the mind map to understand the current state of tool usage and deficiencies in farm implements for small scale paddy farmers.

The question we now faced was, what would be the factors which need to be considered while creating and evaluating new sustainable, appropriate tools? To answer this question, we observed the tools used by the farmers along with the solutions that they come up with to derive possible parameters which can then be used in a framework to design farm implements.

Informal workshop with small scale paddy farmers and Mr Sanjay Patil of BAIF development research foundation

on these field visits and the workshop conducted previously, a tentative list of parameters was prepared and refined. We also mapped the standard set of activities required for farming after a study of activities involved in growing the top seven annually produced crops in India.conducted two more field visits at Jawahar and Naigaon villages of Maharashtra. We also explored factors affecting tool selection, studied solutions developed by farmers and possible directions of research in terms of tool design.

We then classified the parameters which evolved from these discussions and observations under various factors of human, technology, and environment by mapping them onto a Design Futures (DeF) framework developed by my IITB supervisor, Dr Sugandh Malhotra.
We also visited four villages (Kheda, Dharampuri, Rakhadia and Meghnagar) in Jhabua district, Madhya Pradesh. The objective of these visits was to understand the farming needs of small farmers in tribal areas of central India and study community-managed projects and holistic rural development initiatives.

In the next phase of the research, We hope to generate required product specifications from identified needs, which can then be used to design and develop a set of tools.

Traditional wooden plough used by small farmers in Amale village

Since I grew up in an urban suburb with minimal contact with agriculture, this project has been an eye-opening experience. I realised that we carry a lot of latent prejudices and biases when we envision life in rural India and their issues. The ingenuity of these rural small farmers in developing solutions for their needs despite the lack of resources and support has been a humbling experience. It will hopefully make me a better designer and researcher.

I also realised that women in rural areas contribute a lot to farm activities and perform back-breaking skilled labour while getting almost no recognition or support in terms of both policies and tools. Lack of education and awareness also hamper farmers, when it comes to making use of policies and schemes which would help them. This translates into a lack of marketing and technical skills, which puts them at a disadvantage when compared to medium or large scale farmers of the country. However, these farming communities seem much more welcoming and helpful when compared with my experiences in urban areas of the country.

As a privileged male in a patriarchal society, I have the advantage of having a voice and being heard, which can be used effectively to bring to light issues which are generally invisible to the majority of people who can bring about positive change.

I hope the effects of this research will not just be heard, but also change the lives of many for the better.

Research scholar: Sanket Pai, IITB-Monash Research Academy

Project title: Design intervention in farm equipment for small Indian farmers

Supervisors: Dr Sugandh Malhotra, Assoc. Prof. Selby Coxon and Dr Robbie Napper

Contact details: sanket.pai@monash.edu

 This story was written by Sanket Pai. Copyright IITB-Monash Research Academy

Using nanobubbles to strengthen our hearts


“As a child, I used to dream of being a doctor with a magical injection that would eliminate disease and save my patients. Years later, at the IITB-Monash Research Academy, I got an opportunity to work on a rapidly spreading medical threat—atherosclerosis—one of the leading causes of cardiovascular complications,” grins Sourabh Mehta, who is working on a research project titled, ‘Smart nanoparticles for detection of vulnerable atherosclerotic plaques and their therapeutic stabilization’.

Figure 1 Schematics of atherosclerotic plaque

Cardiovascular diseases claim approximately 30% of the world’s population every year. Atherosclerosis is a condition where low-density lipoproteins (Bad cholesterol), and other cellular components get deposited into the arterial wall and form a plaque. “This is like a time bomb developing in your artery wall,” says Sourabh. “After a while, the plaque becomes vulnerable and breaks, releasing clumps of cholesterol and cellular debris in the artery. This could eventually lead to a heart attack, which is why such plaque needs to be identified and stabilized urgently.”

Currently, there is no definite diagnosis to determine the stage of vulnerable atherosclerotic plaque. “This is what motivated me to take up a project that would develop a vulnerable-plaque-specific contrast agent for sonography. Additionally, I would like to develop a drug delivery vehicle that is industry-friendly, cost-effective, and will therapeutically stabilize the plaque,” says Sourabh.

Figure 2 in vitro characterized multimodal nanobubbles; A. Synthesized nanobubbles, B. Cryo-TEM image of nanobubbles; C. in vitro ultrasound image of nanobubbles, D. Schematic of portable ultrasound machine with ultrasound probe and display monitor, E. Schematic action of nanobubbles performing imaging and ultrasound triggered drug delivery.

“We have developed and characterized smart nanoparticles that act as ultrasound contrast agents. We refer to these nanoparticles as nanobubbles, as they contain gas in the core, just like bubbles. Using this platform, we are working on synthesis and characterization of next generation ultrasound-based multimodal contrast agents. These nanobubbles are functionalization-ready, and can thus be used for targeted multimodal contrast agents as well as image-guided drug delivery purposes at the desired diseased area to minimize side effects.”

Sourabh plans to perform pre-clinical studies of vulnerable plaque-targeted nanobubbles on atherosclerotic mice models soon. “If we succeed, this research will hopefully bridge the gap in vulnerable plaque diagnosis, and possibly set the platform for molecular-sonography-based multimodal diagnosis and therapeutic molecular delivery for treatment of other diseases like cancer and arthritis,” he adds.

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Sourabh study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience. Sourabh is supported by Department of Biotechnology (DBT), India.

Says Prof Murali Sastry, CEO of the Academy, “Commercialization of multimodal imaging agents or therapeutic microbubbles is the next big step in the field of diagnostic imaging. We hope that Sourabh will one day be able to realise his childhood dream and present cardiologists the option of using a multifunctional nanobubble injection to strengthen our hearts.”

 

Research scholar: Sourabh Mehta, IITB-Monash Research Academy
Project title: Smart nanoparticles for detection of vulnerable Atherosclerotic plaques and their therapeutic stabilization
Supported by: Department of Biotechnology (DBT), Government of India
Supervisors: Prof. Rinti Banerjee, Prof. Karlheinz Peter, Prof. Alex Bobik
Contact details: sourabh.mehta@monash.edu

This story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and the IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Making batteries stronger and more durable


The current lithium-ion batteries in our cell phones or laptops can sustain for four to five hours after a full charge (assuming continuous use of the device). On the other hand, lithium-sulfur batteries would be able to sustain for almost double that time, as was demonstrated by a leading lithium-sulfur battery manufacturing company.

However, metal-sulfur batteries suffer from several problems such as poor electronic conductivity of active material, gradual dissolution of intermediate products into the electrolyte from the cathode and the dendritic growth associated with pristine lithium metal anode.

Figure 1: How a metal-sulfur battery works

Figure 2: Graphical representation of the research project

This is what motivated Arnab Ghosh, a research scholar with the IITB-Monash Research Academy, to work on a project titled, ‘Design of high energy metal-sulfur batteries’ that focuses on how to mitigate these problems and push metal-sulfur batteries a step ahead towards their practical application.

Says Arnab, “Lithium-sulfur batteries are considered one of the strong candidates to replace currently available rechargeable lithium-ion batteries. The existing lithium-ion batteries cannot meet our ever-increasing energy demand near future, while it is believed that practical lithium-sulfur batteries would have at least twice the capacity and energy density of lithium-ion batteries. Considering the potential viability of the lithium-sulfur batteries, I believe that my research work on sulfur-based cathode materials is important not only as a PhD topic, but can also contribute towards practical application of lithium-sulfur batteries in terms of developing low-cost battery material through facile synthesis strategy.”

During his research so far, Arnab has successfully synthesized a low-cost cathode material for lithium-sulfur batteries following a facile approach. “Our synthesis strategy might encourage the direct utilization of sulfur powder (the petroleum waste) in rechargeable lithium-sulfur batteries,” he says. “Encouragingly, the lithium-sulfur batteries containing our as-synthesized cathode material could run for more than 500 charge/discharge cycles delivering adequate specific capacity and with an extremely low rate of capacity decay (0.02% per cycle).”

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Arnab study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Says Prof Murali Sastry, CEO of the Academy, “Devices have become an indispensable part of our lives. And batteries are an indispensable part of devices. Today’s research challenges require a multi-disciplinary approach. And the way in which the IITB-Monash Research Academy has been set up makes it possible for such multi-disciplinary investigations to be carried out. I am convinced that researchers like Arnab will help the Academy create significant science, societal and industry impact in the future.”

Research scholar: Arnab Ghosh, IITB-Monash Research Academy

Project title: Design of high energy lithium- and sodium-sulfur batteries

Supervisors: Prof. Sagar Mitra (IIT Bombay), Prof. Doug MacFarlane (Monash University) and Dr. Mega Kar (Monash University)

Contact details: arnab.ghosh@monash.edu

This story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and the IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Academy welcomes BASF as industry partner


The IITB-Monash Research Academy is delighted to announce that it has recently partnered with international chemicals major BASF to further research collaborations, specifically in projects related to clean energy, water, nanotechnology, and chemistry.

Preliminary talks were initiated a few months ago, and once common objectives and areas of interest were identified, an umbrella agreement was inked spelling out the scope of the collaboration and the roadmap ahead. Things picked up pace during the June 2019 intake of students at the Academy, when BASF offered to support two research projects undertaken by the Academy’s scholars. It is likely that many more projects will be supported in the future as well.

Prof Murali Sastry (IITB-Monash Research Academy) and Dr Dietmar Hueglin (BASF) celebrating the launch of the partnership

When asked why BASF chose the Academy for a partnership of this nature, Dr Dietmar Hueglin, Director Innovation Campus Mumbai at BASF Chemicals India Pvt Ltd, said, “Cooperating with the IITB-Monash Academy is a unique opportunity for BASF to partner with two word-class academia in India and Australia at once. We specifically appreciate the possibility for long-term partnership in highly relevant research fields, including global grand challenges. The Academy provides easy access to talented PhD students from IITB, and, last but not least, comfortable ease of doing business.”

Prof Murali Sastry, CEO, IITB-Monash Research Academy, is confident that this partnership will lead to exciting outcomes. “The Academy has a strong industry focus and firmly believes in the mantra: From Lab to Land. It was conceived as a unique model for how two leading, globally focused academic organizations can come together in the spirit of collaboration to deliver solutions and outcomes to grand challenge research questions facing industry and society,” he said. “As the reputation of the Academy grows and as more organizations start collaborating with us, we anticipate that we will contribute significantly to maintaining India’s reputation as a leading-edge global research hub. Our partnership with BASF has got off to an exciting start and we hope it will get stronger in the days to come.”

Ami Mehta-Swiss Science Slam


Congratulations to our PhD Scholar, Ami Mehta. She is the second runner up of the Swiss Science Slam. She explained her research work on fabrication of nature-inspired patterns for biomimicry through dance and a poem.

Here is the poem:

Fractals are SMART (Science, Math and Art)

I came across a design,
Self-similar and narcissist,
Neither half, nor whole – just fractional.
Repeats and repeats beyond our imagination
Seems like a favourite of nature too.

I came across a design,
Confusing yet interesting complex
Mendelbrot developed an equation – that iterates and re-iterates to the same pattern,
Seems like a favourite of mathematicians too.

I came across a design,
Beautiful and bizzare.
Simple pattern repeating endlessly until the canvas runs out of space,
Seems like a favourite of artists too.

I came across a design,
Random and everywhere in this universe.
Remarkable are the ways of nature,
Spirals, branches, rivers, hexagons, snowflakes, blood vessels, neurons
And the list is endless.

P.S. If you read carefully, the poem is also a fractal. The last line loops back to the first line.

Research scholar: Ami Mehta

Supervisors: Prof. Prasanna Gandhi, Prof. Prakriti Tayalia & Nicolas Voelcker

Contact details: ami.mehta@monash.edu

Watch her presentation on ‘Fabrication of nature-inspired patterns for biomimicry’ which won her the award:

Measuring soil moisture using P-band radiometry


Have you ever wondered why the possibility of life on any other planet is bleak? It is because our beautiful Earth has rich soil with liquid water which makes life possible.

Soil is the living skin of the Earth, and can be described as the interface between biology and geology. It is the water in soil that keeps the earth’s biota alive. Timely information on soil moisture is required to monitor and forecast agricultural droughts, wildfires, flood risk areas, landslides, etc.

The ability to measure soil moisture accurately is important in domains spanning agriculture, hydrology, and meteorology. In agriculture, it is useful for irrigation scheduling, seed germination and crop yield forecasting. In hydrology, partitioning of rainfall into its runoff and infiltration components depends on soil moisture. Improvement in the prediction of essential climatic variables like rain, temperature, humidity etc., is possible by incorporating accurate soil moisture in weather forecasting models.

Soil moisture is generally measured using L-band radiometry. This remote sensing approach has now been widely accepted as a state-of-the-art method, and has been adopted by leading global soil moisture dedicated satellite missions like Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP).

My research project at the IITB-Monash Research Academy seeks to go beyond L-band radiometry to P-band radiometry, which is a longer wavelength measurement that provides the potential to retrieve deeper soil moisture information. P-band radiometry hopes to do so more accurately due to reduced soil roughness and vegetation effects. However, there are very few articles available in literature to support this hypothesis.

Figure 1. a. Field data measurements for modelling; b. Sunset at our experimental field at Cora Lynn where radiometers operating at well-established L-band (1.4 GHz) and first-of-its-kind P-band (0.75 GHz) are tower-mounted.

Any new satellite technology requires a huge amount of groundwork to test the science and technology that will be put into operation. My research is one of the first few drops in the ocean in this arena of being able to remotely sense deeper depth soil moisture. A self-contained experimental set-up has been established in an agricultural farm at Cora Lynn, Victoria from where the crucial input data for my model comes in. It is anticipated that future satellites will be designed for P-band radiometers, which will use my model to study soil moisture.

We, graduate research scholars of the IITB-Monash Research Academy, study for a dually-badged PhD from IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. The Academy is a collaboration between India and Australia that endeavours to strengthen relationships between the two countries. Its CEO, Prof Murali Sastry says, “The IITB-Monash Research Academy represents an extremely important collaboration between Australia and India. Established in 2008, it is now a strong presence in the context of India-Australia collaborations.”

The area that I am working in is a relatively new direction of research in soil moisture study, and I am hoping that this research will be of help to a variety of users like space agencies, the common man, as well as scientists.

For space agencies like NASA, ESA, ISRO, CESBIO in particular, this work will help them understand and implement future missions for deeper depth soil moisture. To a common man, the data from such a satellite can be processed and produced as maps with which farmers can plan to irrigate their fields, thus knowing more about the already existing water under the surface. To climate research scientists, it can help them to improve their models and forecasts. It also helps in meeting the challenges in water governance.

Moving forward, I’m hoping that you will not just see the soil but will definitely feel it as a RESOURCE!

 

Research scholar: Nithyapriya Boopathi, IITB-Monash Research Academy

Project title: Towards Soil Moisture Retrieval using P-band Radiometer Observations

Supervisors: Prof. Jeff Walker & Prof. Y.S.Rao

Contact details: priya_bsnk@iitb.ac.in, nithyapriya.boopathi@monash.edu

This story was written by Nithyapriya Boopathi. Copyright IITB-Monash Research Academy.