Seeking a new material to monitor hydrogen


The demand for hydrogen on a commercial scale is growing rapidly. This colourless, highly combustible gas is not only a large industrial and laboratory commodity, but also has the potential to be used as fuel, and this could increase the demand to more than 2 trillion cubic metres per year. Therefore it is necessary to have a dedicated sensing system with low saturation, high sensitivity and affordability to measure hydrogen.

Arif Ibrahim, a research scholar with the IITB-Monash Research Academy, is hoping to develop precisely such a system as part of his project, ‘Nano-confined multi component metal hydride system for hydrogen sensing application’.

“Current measuring technologies use various principles — like Resistive, Optical, Bubble Testing, Catalytic Combustion, and Electrochemical,” says Arif. “We hope to come up with a thin-film-based hydrogen gas sensor using carbon-based material, which performs continuous monitoring with appropriate electronic arrangement.”

Hydrogen cannot be detected by human senses, making the use of suitable detection devices necessary. It is highly inflammable, and since hydrogen leaks can be hazardous if not detected quickly, reliable detection systems need to be tested, and their performance validated, so that they can be effectively deployed wherever hydrogen is produced, stored, distributed, or used.

Says Arif, “We have so far come up with a novel material that shows better response with pd dispersion into the matrix of that material and hydrogen gas can be sensed and continuously monitored with its lower limit by using any either resistive- or optical-based detection system. The biggest challenge is to get a proper thin film with thickness that lies under the 2D regime.”

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Arif study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

The image shows the detection principle in resistive as well as optical domain. In resistive sensing approach material is deposited on the top of conductive electrode i.e. gold, silver then sensing is done on the basis of change in resistivity with respect to exposure in the hydrogen rich environment. Similarly optical approaches are based on the change in the reflectivity of the material subjected to hydrogen gas

Says Prof Murali Sastry, CEO of the IITB-Monash Research Academy, “Hydrogen is not a primary energy source such as coal or gas but is an energy carrier (similar to electricity) and can store and deliver energy in a widely useable form. It is one of the most promising alternative fuels for future transport applications. When produced from renewable sources it provides pollution-free transport, without carbon dioxide (CO2) emissions, and decreases our dependence on dwindling oil reserves. If Arif is able to develop a sensing system for hydrogen that’s reliable and robust, the scope is tremendous.”

Arif Ibrahim

Research scholar: Arif Ibrahim, IITB-Monash Research Academy

Project title: Nano-confined multi component metal hydride system for hydrogen sensing application

Supervisors: Prof. S P Duttagupta, Prof. A Sarkar, Prof. Sankara Sarma V Tatiparti, Prof. Raman Singh, Prof. Gita Pendharkar

Contact details: er.arifibrahim@gmail.com

The above story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Graduation Ceremony 2018


 

Graduation celebrated at the highest level

Professor Margaret Gardner AO, President and Vice-Chancellor of Monash University was a special guest at the recent Institute of Technology-Bombay convocation (graduation) ceremony held on August 11th 2018 in Mumbai, India.The guest of honour for the convocation ceremony was the Honourable Mr Narendra Modi, Prime Minister of India, who delivered an inspiring speech as well as three gold medals and 43 silver medals to students.

Joined by a Monash delegation of senior Monash staff, Professor Gardner witnessed the graduation of 29 PhD students from the IITB-Monash Research Academy joint venture program; five students from the program also received medals from the Prime Minister.  The Research Academy is celebrating its 10th year of operation in 2018 and this was the 6th cohort of students to graduate alongside their IITB peers.

Professor Gardner, Deputy Chancellor Shane Buggle and Provost and Senior Vice-President, Professor Marc Parlange formed part of the official academic and VIP procession that sat alongside Prime Minister Modi on the graduation stage as part of the formalities.The IITB-Monash Research Academy joint venture was established in 2008 in recognition of India’s status as an emerging research and global technological powerhouse. It is a collaboration between the Indian Institute of Technology Bombay (IITB) and Monash University.

The IITB-Monash Research Academy enables the formation of multi-disciplinary research teams across Australia and India, challenging the traditional individual/discipline-oriented research agenda. The Academy also enables the long-term engagement of industry commitments structured around major research challenges.

The Academy has successfully fostered deeper collaboration across the higher education sector. It has recruited 250 students, launched 420 joint collaborative projects and produced 600 research publications and Industry funded projects to the tune of $14M in committed contracts. The collaboration has also seen a 585% increase in co-publications from 2012 -2017.After the ceremony the Monash delegation hosted an ‘Alumni and Friends’ reception event in Mumbai. Guests included the newly graduated students, Monash and Academy staff and alumni and friends of Monash drawn from government and industry.

Speaking to the group about Monash’s strength in large scale cross-disciplinary research Professor Gardner said, “You can’t do projects of that scale unless you have excellent research. But you don’t do projects on that scale unless you’re prepared to take on big challenges and big challenges mean you have to work across disciplines.”

“…the challenges we’re prepared to put to ourselves (at Monash) are big challenges and we have the excellent people to take on those challenges,” she concluded.

Also speaking at the event was by Dr Murali Sastry, CEO IITB- Monash Research Academy. He joined Professor Gardner is congratulating the new graduates and in highlighting the importance of continued engagement in India. He also encouraged Monash University Alumni to connect with alumni from the Research Academy.

Tracking nanoparticle movement deep inside our lungs


Lung disease is the third leading cause of deaths worldwide, according to a study by the World Health Organization. The respiratory system is prone to numerous diseases like asthma, bronchitis, pneumonia, and cancer. Many of these are caused by nanoparticles that deposit on the inner surfaces in our lungs.

• How does our breathing pattern affect the transport and deposition of these nanoparticles?
• Does our breathing rate during different activities like sleeping, running or walking have any significant effect on this?
• What are the differences in the breathing profiles of healthy persons and those with diseases?
• Can predicting nanoparticle movement in the lung help combat lung disease?

These are some of the questions that Chitresh Bhargava, a research scholar with the IITB-Monash Research Academy, is seeking answers to as part of his PhD project titled ‘Deep in the Lung: Nanoparticles transport and deposition in alveolar flows’.

“The transfer of desirable (drugs) or undesirable aerosols (pollutants) in the lung occurs with the exchange of oxygen and carbon dioxide in small sacs known as alveoli (more than 300 million in number). Understanding the transport and deposition of such nanoparticles is of deep interest to me,” says Chitresh. “It enables us to study health effects — both from the point of view of potential risks due to pollutants and safety to pharmaceutical drug delivery.”

Previous studies suggest that factors such as the particle size and carrier airflow pattern determine the deposition fraction in regions such as nasal pharyngeal, bronchioles and alveoli. “It has been reported that a fine particle size (approximately 20 nm) has a deposition fraction of 90% in the alveoli”, which suggests that diffusion is the main mechanism of particle deposition. However, studies reveal that diffusion cannot be the only reason. Convective transport plays a vital role as well in the transport of particles along the conducting airways.”

During his research, Chitresh will simulate and analyze fluid flow and particle deposition in various complex alveolar models of the pulmonary tract through computational fluid dynamics (CFD). “In a series of studies, we will employ the CFD approach as it allows us to consider flows that are very difficult to model experimentally even for very small particles. However, CFD has not yet been used extensively to study alveolar deposition. Limitations such as failure to incorporate the accurate shape of the alveoli, expansion-contraction of the alveoli during breathing, and the impact of breathing rate on the transport and deposition of aerosols have influenced us to work on a more accurate method to track particles in the alveoli.”

Airflow simulation in an alveolated duct 3D model for Reynolds number 0.01. The streamline profile shows re-circulation of air in alveoli

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Chitresh study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Says Prof Murali Sastry, CEO of the IITB-Monash Research Academy, “Extensive research is being conducted to ascertain new drugs and drug delivery systems for pulmonary delivery that are more efficient and safe. It is first important, though, to understand the mechanism of transport and deposition of the particulate matter in the human lung rather than directly switching to the drug delivery system for treatment of a number of diseases. Thus, the prediction of the particle deposition in the human pulmonary tract is of vital importance to evaluate the risks associated with exposure to air pollutants. We hope Chitresh’s research will lead to a novel understanding of transport and deposition mechanisms that occur in alveolar flows, which, in turn, will help us all breathe a little easier!”

 

Research scholar: Chitresh Kumar Bhargava, IITB-Monash Research Academy

Project title: Deep in the Lung: Nanoparticles transport and deposition in alveolar flows

Supervisors: Prof. Devang V. Khakhar, Prof. Murray Rudman and Dr. Guy Metcalfe

Contact details: chitreshbhargava29@gmail.com

The above story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Making robotic surgeries more efficient and interactive


Aspiring surgeons find surgical simulators very helpful as a training tool. However, most of these simulators use simplified tool-tissue interaction because of the real-time feedback required. This problem can be overcome if finite models are developed.

Abhishek Mukherjee, a research scholar with the IITB-Monash Research Academy, is therefore working on a project titled ‘Modeling of the interaction of soft tissues and cells with their environment’.

It is well-documented that during surgery the tissue response is a function of force (applied by the surgeon), tool position, and the path taken by the surgeon. Abhishek is attempting to develop tool-tissue interaction models to predict feedback which could directly be fed to the haptic device if the simulations can be conducted in real time. And just in case real time computations are slow, realistic simulations could be carried out offline and fitted into meta-models, which could then be used for feedback from the haptic device.

“A part of my project deals with modeling the interaction between a robotic surgical tool and tissue to characterize the mechanical properties of the tissue. Through this, we may be able to detect the presence of a tumor embedded in it,” says Abhishek excitedly. “And then there’s the other part, where I plan to model stresses on cells when they migrate through 3D channels. This is likely to give us more insight into the physics behind such processes. Cancerous cells take more time to migrate than healthy ones, and thus might serve as a bio-indicator. Bio-mechanical interactions are complex because they cannot simply be analyzed from a mechanical standpoint — there are several biological processes involved too. I relish the possibility that I get to unravel some of nature’s best kept secrets by understanding how bio-mechanisms work. The model that we have developed could make robotic surgeries more efficient and interactive.”

A three-dimensional computational model of an indentation process to detect an embedded cancerous nodule. The colours indicate stress development in the system with red indicating high stress and blue low stress conditions.

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Abhishek study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Says Prof Murali Sastry, CEO of the IITB-Monash Research Academy, “The first part of Abhishek’s project holds a lot of promise for efficient robotic surgery in that there is a major push to make robotic surgery more interactive and make robots ‘feel’. Unfortunately, mathematical models to do are still to be developed. Robotic surgeries are currently done based on distance estimation to the target organs, but incorporating a touch or force sensation would make the process more intuitive and interactive for the surgeons operating on it remotely. The second part of the project is important to understand the physical phenomenon behind cell migration through constricted spaces. This could give more insight into understanding the dislocation of cancer cells from their primary location to lodging themselves in a separate location to give rise to secondary tumors. Understanding these phenomena could go a long way in treating cancers.”

Abhishek Mukherjee

Research scholar: Abhishek Mukherjee, IITB-Monash Research Academy

Project title: Modeling of the interaction of soft tissues and cells with their environment

Supervisors: Prof Ramesh Singh, Prof Shamik Sen, Prof Abhishek Gupta, Prof Wenyi Yan

Contact details: abhmukh@gmail.com

 

The above story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Excellence in PhD Research!


Message from Prof. Murali Sastry, CEO:

“It is a matter of immense pride that 5 of the Academy students have been selected for the “Excellence in PhD Research” Award and will receive this honour at the hands of the Hon’ble Prime Minister of India, Shri Narendra Modi, during the Convocation on 11 August, 2018. They are :

  • Dr. Ramakrishna Bairi
  • Dr. Vignesh Kuduva
  • Dr. Jayesh Sonawane
  • Dr. Subhadeep Das
  • Dr. Jhumur Banerjee

On behalf of the entire IITB-Monash Research Academy, I’d like to congratulate all of the award winners and wish them the very best as they set out on their careers.

Alumnus invents tough, metal alloy


Four times stronger than stainless steel, a unique alloy blends chromium, cobalt, iron, manganese and silicon.

It’s not Black Panther’s vibranium or Captain America’s proto-adamantium shield, but a new alloy has come pretty close.

Our alumnus, a University of North Texas researcher Saurabh Nene has been working with UNT’s College of Engineering Department of Materials Science and Engineering to mix and flow material simultaneously, giving the alloy new strength.

The alloy, which has no catchy name like its fictional counterparts, is created by melting and casting the materials, then taking the thin, flat mold to start “friction stirring,” Nene said.

Nene, who has been working on this piece of research for eight months, said the process intensely deforms the metal’s makeup by forcibly inserting a rotating tool into the cold metal.

“When you insert the tool in the metal, it generates frictional heat,” Nene said “When you move the tool ahead, it starts mixing the metal. The mixing and flow of the metal creates an intense deformation.”

The only problem with using Nene’s alloys commercially is the cost. While he said he could not estimate that exactly, he is trying to change the chemistry of the alloy to replace the cobalt element. For reference, cobalt costs $78,500 per ton. Iron costs $65.

“We are still trying to look for a good substitute that is not costly but can have the same result,” Nene said. “The main goal is to maintain the properties.”

Nene, alongside lab colleagues Michael Frank, Kaimiao Liu, Brandon McWilliams and Kyu Cho of the U.S. Army Research Laboratory in Maryland, published a report July 2 in the online journal Scientific Reports.

A paper related to the topic was also published in the journal in November 2017.

Designing and developing a self-piloted airship


A rendered image of an airship under development

Airships, which are typically aircraft that float because they are inflated with gas lighter than air, are slower than airplanes but more efficient with regard to energy consumption. They have many uses, but being extremely light, are difficult to control. This is what motivated Sohan Suvarna, a research scholar with the IITB-Monash Research Academy, to work on a project titled, ‘Design and Development of Autonomous Airships’.

“The biggest challenge that airship operators face is the effect of crosswinds,” reveals Sohan. “These big balloons are literally at the mercy of winds. This is why they are not as popular as airplanes, in spite of being cost-effective. Several researchers have been working on developing effective control laws for these vehicles. My goal is to develop an airship with excellent lateral stability.”

For over half a century after World War II, airships were used mainly for sightseeing or advertising. Now, the uses range from surveillance—particularly in archaeological, ecological, agricultural and livestock studies—to weather forecasting, pollution control, and even as network/ Wifi routers.

While airplanes use most of their power in the generation of lift, an airship relies mainly on aerostatics for lift generation. It uses most of its power in manoeuvring and counteracting crosswinds.

Sohan’s research is multidisciplinary—requiring the amalgamation of design, simulation and implementation. The potential research outcomes are many:

• Design and fabrication of an airship capable of effective control. (One of the airships that Sohan has built can be viewed here: https://www.youtube.com/watch?v=Xet1SyeawEE)

• Development of a high fidelity versatile flight dynamics model to anticipate the flight of the airship in real time. This is like predicting how the airship would behave, given ambient conditions
• Development of a control law that could guide the airship, and
• Implementation of the developed control law and navigation algorithm into an actual airship


Sohan Suvarna’s research flight plan

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Sohan study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Says Prof. Murali Sastry, CEO of the IITB-Monash Research Academy, “The applications of an autonomous airship are limited only by imagination. Since unmanned aerial vehicles do not require a pilot onboard, their endurance is not restricted by the physiological capabilities of the pilot. Besides, in an age of diminishing energy sources and fuel-hungry jets, it wouldn’t be a bad idea to look for energy-efficient transportation.”

Sohan, incidentally, is also passionate about stargazing. For this researcher, the sky is clearly not the limit!

Sohan Suvarna
Research scholar: Sohan Suvarna, IITB-Monash Research Academy
Project title: Design and Development of Autonomous Airships
Supervisors: Prof. Rajkumar Pant, Prof. Arpita Sinha, Prof. Hoam Chung
Contact details: sohan.suvarna@monash.edu

 

The above story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.