Measuring soil moisture using P-band radiometry


Have you ever wondered why the possibility of life on any other planet is bleak? It is because our beautiful Earth has rich soil with liquid water which makes life possible.

Soil is the living skin of the Earth, and can be described as the interface between biology and geology. It is the water in soil that keeps the earth’s biota alive. Timely information on soil moisture is required to monitor and forecast agricultural droughts, wildfires, flood risk areas, landslides, etc.

The ability to measure soil moisture accurately is important in domains spanning agriculture, hydrology, and meteorology. In agriculture, it is useful for irrigation scheduling, seed germination and crop yield forecasting. In hydrology, partitioning of rainfall into its runoff and infiltration components depends on soil moisture. Improvement in the prediction of essential climatic variables like rain, temperature, humidity etc., is possible by incorporating accurate soil moisture in weather forecasting models.

Soil moisture is generally measured using L-band radiometry. This remote sensing approach has now been widely accepted as a state-of-the-art method, and has been adopted by leading global soil moisture dedicated satellite missions like Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP).

My research project at the IITB-Monash Research Academy seeks to go beyond L-band radiometry to P-band radiometry, which is a longer wavelength measurement that provides the potential to retrieve deeper soil moisture information. P-band radiometry hopes to do so more accurately due to reduced soil roughness and vegetation effects. However, there are very few articles available in literature to support this hypothesis.

Figure 1. a. Field data measurements for modelling; b. Sunset at our experimental field at Cora Lynn where radiometers operating at well-established L-band (1.4 GHz) and first-of-its-kind P-band (0.75 GHz) are tower-mounted.

Any new satellite technology requires a huge amount of groundwork to test the science and technology that will be put into operation. My research is one of the first few drops in the ocean in this arena of being able to remotely sense deeper depth soil moisture. A self-contained experimental set-up has been established in an agricultural farm at Cora Lynn, Victoria from where the crucial input data for my model comes in. It is anticipated that future satellites will be designed for P-band radiometers, which will use my model to study soil moisture.

We, graduate research scholars of the IITB-Monash Research Academy, study for a dually-badged PhD from IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. The Academy is a collaboration between India and Australia that endeavours to strengthen relationships between the two countries. Its CEO, Prof Murali Sastry says, “The IITB-Monash Research Academy represents an extremely important collaboration between Australia and India. Established in 2008, it is now a strong presence in the context of India-Australia collaborations.”

The area that I am working in is a relatively new direction of research in soil moisture study, and I am hoping that this research will be of help to a variety of users like space agencies, the common man, as well as scientists.

For space agencies like NASA, ESA, ISRO, CESBIO in particular, this work will help them understand and implement future missions for deeper depth soil moisture. To a common man, the data from such a satellite can be processed and produced as maps with which farmers can plan to irrigate their fields, thus knowing more about the already existing water under the surface. To climate research scientists, it can help them to improve their models and forecasts. It also helps in meeting the challenges in water governance.

Moving forward, I’m hoping that you will not just see the soil but will definitely feel it as a RESOURCE!

 

Research scholar: Nithyapriya Boopathi, IITB-Monash Research Academy

Project title: Towards Soil Moisture Retrieval using P-band Radiometer Observations

Supervisors: Prof. Jeff Walker & Prof. Y.S.Rao

Contact details: priya_bsnk@iitb.ac.in, nithyapriya.boopathi@monash.edu

This story was written by Nithyapriya Boopathi. Copyright IITB-Monash Research Academy.

Precision agriculture-the future of farming


Can you describe — in five words or less — how your research work will help people like me, I prod Rahul hesitantly.

“More crop per drop!” he grins without batting an eyelid.

Rahul Raj’s PhD project is titled, ‘Drone-based hyper-spectral sensing for identification of at-risk nitrogen and water stress areas for better on-farm management’. “In this work, we are generating new indices by using hyperspectral bands (400-1000 nm electromagnetic spectrum) to identify the nitrogen and water stress present in plants. Detailed crop biophysical and biochemical parameters are also collected, with which we hope to create a mathematical model for crop nitrogen and water estimation,” he offers by way of explanation.

A research farm equipped with the necessary sensors

Rahul is a research scholar at the IITB-Monash Research Academy, a Joint Venture between IIT Bombay and Monash University which offers a dual-badged PhD from both organisations. He works under the supervision of Prof. J. Adinarayana and Prof. Jeffrey Walker.

“Farming in developing countries like India depends heavily on knowledge passed down through generations” he explains. “Some of this is unscientific, and leads not only to low productivity and degradation of resources but also to an increase in the pesticide residue content in our food, which could affect our health.”

A scientific on-farm management technique can guide the farmer to apply the input resources at the right time, in the right amount, and right quantity. And this is where researchers like Rahul are hoping to make a difference.

“Precision agriculture (PA) is an innovative and integrated approach which will help farmers to make evidence-based decisions at the farm level and ensure optimal use of resources,” he says. “PA marries traditional knowledge with information- and management-intensive technologies and this collaboration will hopefully make the system sustainable, productive, and profitable.”

Numbers are critical to any research project, and Rahul spends a lot of time in the field collecting critical data. “This is challenging, but also essential, because when the researcher collects the data himself, they have a better understanding of the nexus between the different variables.”

Why is this research so important? Rahul outlines four stakeholders that will benefit from his work:

– Farmers — who will be able to ascertain when, where, and how much fertiliser, pesticides and water they need to use;
– Consumers — who will get foodgrains with minimum pesticide residue in their food;
– Startups/companies in the agriculture business — who can attain optimal yield from farms, so that management practices don’t become a bottleneck in supplying food to every plate, and also it will open business opportunities with social impact;
– Researchers/Academicians – who will be motivated to work on inter-disciplinary challenges and opportunities in agriculture

Prof Murali Sastry, CEO, IITB-Monash Research Academy, is among those following Rahul’s work with keen interest. “The Academy provides an opportunity for the industry in Australia and India, as well as for IIT Bombay and Monash University, to train the next generation of talent in India,” he says. “Worldwide, we need to find an effective way to feed 7.7 billion people every day with limited cultivable land at our disposal, and this number is only going to rise. We hope that Rahul Raj and other research scholars from the Academy will provide solutions to these vexing problems.”

Research scholar: Rahul Raj, IITB-Monash Research Academy

Project title: Drone-based hyper-spectral sensing for identification of at-risk N and water stress areas for better on-farm management

Supervisors: Prof. J. Adinarayana and Prof. Jeffrey Walker.

Contact details: rahul_raj@iitb.ac.in

This story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and the IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Extracting hidden riches from pineapple waste


India is a significant producer of fruit-based products. However, a huge quantity of the raw material as well as the produce ends up getting wasted.

Take pineapples for example. A significant 45-50% of the fruit comprises non-edible parts (peels, crown, core), which are lost during its processing.

This “waste” is actually a resource and contains many valuable components that are lost during disposal or landfilling. In order to address this concern, researchers worldwide are seeking sustainable and green processing methods which would have minimal environmental impact.

One such researcher is Shivali Banerjee, who is working at the IITB-Monash Research Academy on a project titled, ‘Extraction of Bio-based Chemicals from Pineapple Wastes’ under the supervision team of Prof Amit Arora (IITB), Prof Antonio Patti (School of Chemistry, Monash University), and Dr R Vijayaraghavan (School of Chemistry, Monash University). This research contributes to addressing issues that are of international significance. The pineapple industry is important not only in India, but also in Australia.

Generation of waste from pineapple processing (Darjeeling, West Bengal, 2017)

The Academy, which operates a graduate research program in Mumbai, is a Joint Venture between IIT Bombay and Monash University. Research is conducted by scholars in both countries, while studying for a dual-badged PhD from both organisations.

Shivali’s dream is to develop an integrated biorefinery from pineapple waste, where multiple products can be extracted from the same raw material by green and cost-effective extraction methodologies. She is confident that this project will directly have an effect on the stakeholders — farmers, food processing industries, and food researchers. Besides, a biorefinery-based approach would be able to link more than one industry for sustainable production of value-added products.

“Processing industries hardly pay any attention to the potential of the residues of fruit,” Shivali laments. “Pineapple waste, for example, is rich in sugars, polyphenols, enzymes, organic acids, vitamins, and dietary fibres. With appropriate treatment, this can be converted into natural preservatives, flavouring agents, food tenderisers, food additives, pharmaceutical drugs, and dietary-fibre-rich sources.”

In a field survey that she conducted in Darjeeling, West Bengal (2017), Shivali found that the large quantity of on-farm waste (leaves and stem) poses a major concern to the pineapple growers in the north-eastern part of India, and, a majority of it is therefore burnt on the fields before growing the new crop. “I am trying to recover and purify an enzyme called bromelain from pineapple waste, which has potential applications in food and therapeutics. Highly purified bromelain can fetch up to USD 2400 per kilogram (Ketnawa et al., 2012), and the economics can further be improved as the extraction is made from low value waste,” she explains. “Other important products that I have focused are on dietary fibres, sugars, and phenolics. Dietary fibres from pineapple waste could be a functional ingredient in health foods. Phenolics are other high-value chemicals that possess many health benefits such as antimicrobial, anti-inflammatory, anti-allergic and antioxidant effects.”

Conversion of Pineapple Waste into value-added products

Prof Murali Sastry, CEO, IITB-Monash Research Academy, is among those following Shivali’s work with keen interest. “All over the world, fruit waste rich in valuable components is lost in dump yards or landfills. We urgently need to address this by seeking green and sustainable processing methods that could valorize the processing waste and minimise environmental impact,” he says. “The Academy provides an opportunity for industry in Australia and India, as well as for IIT Bombay and Monash University, to train the next generation of talents in India. We’re hoping that Shivali and other research scholars from the Academy will become much sought after around the globe.”

Research scholar: Shivali Banerjee, IITB-Monash Research Academy

Project title: Extraction of Bio-based Chemicals from Pineapple Wastes

Supervisors: Prof. Amit Arora, Prof. Antonio Patti, Dr. Vijayaraghavan Ranganathan

Contact details: shivali.banerjee@monash.edu

This story was written by Mr Krishna Warrier based on inputs from the research student, her supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Understanding chromatin folding through computer simulations


Imagine how difficult it is to fold a 20km long rope into a tennis ball. And, even if you succeed, imagine you are asked to locate a specific section of the rope in the ball which may be 5km from one end. Phew!

The biological cells are like the tennis-ball, and the rope here is the DNA in our cells. DNA — the genetic material in our cells — is a two-metre long polymer folded and packed inside a micro-meter sized compartment known as cell nucleus. This kind of folding of DNA occurs in each cell of every living organism.

Figure 1: Model developed in this work converts 2D contact probability into meaningful 3D model.

In our cells, the folding is achieved by a number of machines known as proteins, and the folded DNA-protein complex together is known as chromatin. How proteins achieve this high packing within a limited time is an unresolved puzzle in this field.

Any organism, like human beings, have different types of cells — skin cells, brain cells, bone cells, to name just a few. Even though these cells have exactly the same DNA content, they function very differently. This diversity in cell function is achieved by packaging the same in DNA in different manner — the chromatin organization inside the cell dictate the function of the cell.

One way to quantify the 3D organization of chromatin is to examine how different parts of the DNA polymer are in contact with each other. Advances in experimental techniques have helped us to measure the contact frequency between any two parts (segments) of the long DNA polymer, after freezing the whole chromatin in time. This experimental technique — chromosome confirmation capture method — gives the frequency with which any two segments will be in contact in a population of cells.

This information is 2-dimensional, which is static in time. We need a model which can predict the 3-dimensional configuration and dynamics of DNA based on the contact frequency information investigated through experiments.

Kiran Kumari, a research scholar with the IITB-Monash Research Academy, intends to put together such a model in the course of her PhD project titled, ‘Computing the dynamics of Chromatin folding’.

Using concepts from polymer physics, she proposes a method to obtain the 3D configuration from a given 2D contact probability heat map. This method can not only predict the steady-state 3D configuration but can also study the dynamics around the steady state. Using this method, she studies 3D configurations and dynamics of chromatin in a length scale of a gene. In particular, her model can predict the interaction profile which is required to produce the contact probability.

The Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars study for a dually-badged PhD from both IIT and Monash University, spending time at both institutions to enrich their research experience.

Prof Murali Sastry, CEO of the IITB-Monash Research Academy, is watching Kiran’s progress keenly. “This project will enhance our ability to understand mechanisms in biological systems such as biological cells. It will also help us understand the fundamental molecular aspects of biodiversity — all of which are essential to harness biomolecular processes, whether in health care or biotechnology,” he says.

Research scholar: Kiran Kumari, IITB-Monash Research Academy
Project title: Computing the dynamics of chromatin folding
Supervisors: Prof. Ranjith Padinhateeri and Prof. Ravi Jagadeeshan
Contact details: kiran.kumari@monash.edu

 

The above story is based on inputs from the research student, her supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Understanding pitting corrosion in aluminium and its alloys


We are often shocked when we read media reports about catastrophes like air crashes, shipwrecks, bridge collapses, or explosionof gas pipelines. Investigations invariably point towards environmental cracking, a stress corrosion induced mechanical failure, as the apparent cause.Not many of us are aware, however, that deep down such cracks emanate from tiny corrosion pits. Pits are minuscule trenches that form when a defective local site on a metal surface corrodes due to environmental exposure while rest of the surface is protected by a barrier-like passive film. While pitting corrosion alone can cause a major failure, they also serve as initiation sites for secondary modes of corrosion such as Stress Corrosion Cracking (SCC), Inter-Granular Corrosion (IGC) or corrosion fatigue.

Fig 1. Pitting corrosion in Nandu River Bridge (Source: Wikipedia, https://en.wikipedia.org/wiki/Pitting_corrosion)

Aluminium is an important class of light metalalloy system that is indispensable in the manufacture of aircraft and shipbuilding components as it has desirable properties that aid in fuel efficiency,which in turn reduces greenhouse effects. Pitting is an imperative form of corrosion in aluminium wherein microstructures that are carefully tailored to meet engineering requirements, are often heterogeneous and unfortunately form the basis for initiation of corrosion pits. However, design of microstructurally complex alloys is possible with an in-depth understanding of pitting mechanism that would enable adoption of appropriate mitigation strategies.            

This is where I am hoping to make a difference. IITB-MonashResearch Academy, where I have enrolled for a PhD, is a collaboration between India and Australia that endeavours to strengthen scientific relationshipsbetween the two countries. Graduate research scholars study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Pits can cause irreversible and persistent damage accumulation. Thankfully, however, not all pits are detrimental unless they reach stability. An initiated pit switches between an active and dormant state several times, called metastable pitting, attempting to establish a conducivepit chemistry before it transforms into a stable pit; else the pit perishes.Thus, my prime focus is to study metastable pitting characteristics in order to understand the critical factors that influence the transition of a pit to stability.

The study of pits is challenging as pit events at any instant are numerous, dynamic and stochastic (Fig 2). For instance, it is complex to determine when and where a pit would occur, wherein the susceptible sites are characteristic to the microstructure of an alloy and other metallurgical parameters. To overcome this difficulty, we employ in-situ analytical characterisation of specifically fabricated microelectrodes, which has enabled real-time imaging of the surface, during electrochemical metastable pitting studies. Successful isolation of single metastable pit events enabled a detailed real-time investigation of their behavioural characteristics during growth and decay of a metastable current transient (Fig 3) and their transition to stable pits, which in turn have provided significant insights on pitting mechanism.

Figure 2. In-situ real time imaging of an aluminium alloy shows numerous, dynamic, and stochastic evolution of pits marked by H2 evolution (black circles). (Picture credit: Gayathri Sridhar)

This research work has many potential benefits such as rational alloy design and additive manufacturing with safety as the prime focus to provide reliable corrosion-resistant materials for the manufacture of vehicles and in construction. Additionally, advancing the current knowledge in pitting would provide a stronger basis for understanding secondary modes of corrosion and development of mitigation strategies.

Figure 3. An illustration of a typical metastable pit current transient demonstrating total pit lifetime (tlife) , active pit growth time (tgrowth) and passive pit decay time (trepassivation). ipeak is an indication of the charge damage accumulated during the pitting event. (Picture credit: Gayathri Sridhar)
Gayathri Sridhar

Research scholar: Gayathri Sridhar, IITB-Monash Research Academy

Project title: Understanding metastable pitting in aluminium and its alloys

Supervisors: Prof V.S. Raja (IIT Bombay), Prof Nick Birbilis (Monash University)

Contact details: cecrigayu@gmail.com,gayathriks@iitb.ac.in,gayathri.sridhar@monash.edu

This story was written by Gayathri Sridhar. Copyright IITB-Monash Research Academy.

Harnessing the Ion Bombardment process to create novel nanostructures


Cover picture courtesy: Ms. Nandini Bhosale, IDC

The rapidly evolving field of micro- and nano-fabrication is the meeting ground of physics, chemistry, biology, medicine, and engineering.

Conventional lithography techniques are widely used to fabricate microstructures commercially. However, such techniques have limitations at the nano level. Research in areas related to nanofabrication is therefore crucial in order to develop and improve novel manufacturing techniques.

This is where Vivek Garg, a research scholar with the IITB-Monash Research Academy, is hoping to make a significant contribution.

“My research is based on Focused Ion Beam (FIB) process for nanofabrication and its application in creating novel nanostructures,” explains Vivek. “The aim is to model ion-material interactions followed by rapid computation ion beam-based material removal (milling or etching), in order to create 2D/3D structures at both micro- and nano-scale for diverse applications like anti-reflection, colour filters, and sensors, to name a few.”

The Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Vivek study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Says Vivek, “FIB is a promising technique due to its capability range and diverse applications”.

For instance, it can be used for:

  • milling, thus making it suitable for micro- / nano-machining,
  • deposition, allowing for additive nanomanufacturing applications, and
  • imaging, which makes it even more powerful for microscopy analysis and materials applications.

Vivek plans to develop a reliable modelling methodology to predict optimized FIB process parameters for milling, which is expected to lead to robust and accurate 2D/3D structures at the micro- / nano-scale. He is currently working on ion induced, in-situ controlled manipulation of nanostructures and investigation through molecular dynamics simulations, in order to arrive at a feasible methodology. This work will be critical for 3D nanofabrication with promising nanoscale-controlled manipulation, strain engineering of nanostructures, opening new avenues in the diverse field of ion beams and applications beyond material science for realization of future nanoscale devices.

Optimization of Focused Ion Beam (FIB) milling process: Simulation results for a spherical profile obtained from optimization algorithm at a beam current of 20 pA and pixel size of 3 nm (a) Designed spherical profile, (b) Simulated spherical profile, (c) Error between the designed and simulated profile [1]

Rapid prototyping of subwavelength silicon nanostructures for light trapping and antireflection Properties (a) Scanning electron microscopic (SEM) image of fabricated designed Si Gaussian pillar nanostructures, (b) Antireflection properties exhibited through fabricated pillars and comparison with simulation results, (c) Optical absorption per unit volume exhibiting light trapping [2]

Structural colour printing with FIB: (a) Direct fabrication of subwavelength nanostructures for multicolour generation, (b) A wide colour palette shown with optical microscopic images of fabricated colour filters, (c) Nanoscale structural color printing: few examples, such as butterfly, Kangaroo, letters, shown via SEM image and including corresponding optical microscopic image showing generation of unique structural colours [3], [4]

Microscopic Gardening: Tiny Blossoms of Silicon
The image shows scanning electron micrograph of silicon nanoflowers realized with focused ion beam in conjunction with wet chemical etching methods. The bulk structuration of Si substrate, based on the ion implantation design and area, allows fabrication of exotic functional and 3D micro/nanostructures on Si substrate exhibiting unique optical properties for applications in nanophotonics and physical sciences (Image scale bar 400 nm)

Prof Murali Sastry, CEO of the IITB-Monash Research Academy and a leading nanomaterial scientist says, “Nanofabrication is an art. Future applications require materials with improved electronic, magnetic, optical, and mechanical properties. Many of these properties are defined by the structure and composition in the size range below 100 nm. It is most important to maintain the material integrity and composition as we move towards the nano-scale, which is what makes Vivek’s project so challenging.”

Oftentimes, it pays to think small when we need to think big!

Research scholar: Vivek Garg, IITB-Monash Research Academy
Project title: Focused Ion Beam (FIB) Fabrication of Novel 2D/3D Nanoscale Structures: Process Modeling and Applications
Supervisors: Prof. Rakesh G. Mote, Prof. Jing Fu
Contact details: vivekgarg@iitb.ac.in, vivek.garg@monash.edu

[1] V. Garg, R. G. Mote, and J. Fu, “Focused Ion Beam Fabrication: Process Development and Optimization Strategy for Optical Applications,” in Precision Product-Process Design and Optimization, Springer, Singapore, 2018, pp. 189–209.
[2] V. Garg, R. G. Mote, and J. Fu, “FIB fabrication of highly ordered vertical Gaussian pillar nanostructures on silicon,” in 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), 2017, pp. 707–712.
[3] V. Garg, R. G. Mote, and J. Fu, “Coloring with Focused Ion Beam Fabricated Nanostructures,” Microscopy and Microanalysis, vol. 24, no. S1, pp. 856–857, Aug. 2018.
[4] V. Garg, R. G. Mote, and J. Fu, “Focused Ion Beam Direct Fabrication of Subwavelength Nanostructures on Silicon for Multicolor Generation,” Advanced Materials Technologies, vol. 3, no. 8, p. 1800100, Aug. 2018.

The above story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Automatic Q&A Generation from Text


Asking relevant and intelligent questions has always been an integral part of human learning, as it can help assess the learner’s understanding of a piece of text. However, compiling questions manually is arduous. Automated question generation (QG) systems can help, as they have the ability to generate questions quicker and on a larger scale.

A typical scenario is evaluating students on reading comprehension, where it becomes tedious for a teacher to manually create questions, find answers to these questions, and then evaluate answer papers after the test has been administered. All these complex tasks can now be automated using an automatic question and answer generation system.

This is why research scholar Vishwajeet Kumar’s project titled, ‘Automatic Question and Answer Generation from Text’ has tremendous potential in a scenario where scientists are closely examining the efficacy of neural network-based methods in question generation from text.

“A compact Question Generation system would be able to generate meaningful, syntactically correct, semantically sound, and natural questions from text. The questions that work best are those that have supporting answers present in the text,” explains Vishwajeet, who has enrolled for a PhD programme in the IITB-Monash Research Academy,

 Early attempts at automated question generation depended heavily on a strict, limited, ad-hoc, and hand-crafted set of rules. These rules focus mainly on the syntactic structure of the text and are limited only to sentences of simple structures. Recently, the success of sequence-to-sequence learning models has opened up possibilities of looking beyond a fixed set of rules for the task of question generation.

 An automatic question generation system has applications in areas as diverse as FAQ generation, intelligent tutoring systems, and virtual assistants. Question generation can be naturally applied in the educational setting such as online courses, automated help systems, and search engines. It can also be applied in a wide variety of other domains — including chatbot systems (e.g. for customer interaction) and health care for analysing mental health.

Explaining his work so far, Vishwajeet says, “We present a system to automatically generate question and answer from text. Our system follows a two-stage process to generate question-answer pairs from the text. In the first stage, we present alternatives for encoding the span of the pivotal answer in the sentence using Pointer Networks. In the next stage, we employ sequence-to-sequence models for question generation, enhanced with rich linguistic features. Finally, global attention and answer encoding are used for generating the question most relevant to the answer.”

The IITB-Monash Research Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Vishawajeet study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Says Prof. Murali Sastry, CEO of the IITB-Monash Research Academy, “More and more institutions are moving from classroom teaching to online courses using platforms like MOOC, EDX, etc. For those administering such online courses, generating meaningful questions manually is a tedious task. The work of researchers like Vishwajeet shows us that asking meaningful and intelligent questions will improve the ability to answer them!”

Research scholar: Vishwajeet Kumar, IITB-Monash Research Academy

Project title: Automatic Question and Answer Generation from Text

Supervisors: Prof.Ganesh Ramakrishnan and Prof. Yuan-Fang Li

Contact details: vishwajeet@cse.iitb.ac.in

The above story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

 

 

 

 

Nanostructure fabrication inspired by sand dune ripples


What can nanotechnologists learn from ripples on sand dunes?

A lot, smiles Bhaveshkumar Kamaliya, a research scholar with the IITB-Monash Research Academy — who is convinced that if he can mimic the macro-scaled ripples or wave-patterns seen on sand dunes to a nanoscale, it will help him study interactions of ion beams with surfaces of different materials, and perhaps even create self-organized nanostructures.

Nano-scaled structures strongly improve optical, electrical, and magnetic properties of materials. This has led to the study and development of many nanostructure-based devices; however nano-structuring poses a tremendous challenge as the fabrication process for such devices is not available due to limitations of conventional photolithography and electron beam lithography techniques.

“My project has two key aspects,” explains Bhavesh, “(i) experimental investigations for the formation of nanoripples, nanodots, and other complex nanostructures by varying parameters of energetic ion beams, and (ii) molecular dynamics simulations and modelling for understanding, validating and predicting experimental outcomes.”

“The self-organized nanoripples have the potential to serve as functional nanostructures and exhibit novel structures required for photovoltaics, surface plasmons, photonics, bio-sensing, etc.,” says Bhavesh. “Controlling the topography at the nanoscale is challenging and studying the mechanism behind the phenomena could help develop new and complex materials.”

His work is likely to offer the scientific community a systematic understanding of the mechanism behind self-organized nanostructures induced by Focused Ion Beam (FIB) irradiation. It could even lead to the fabrication of an efficient photovoltaic-based energy harvesting device or surface plasmon-based bio-sensing device.

Nanorippled Germanium: (a) Scanning electron micrograph (false coloured) of nanoripples on germanium surface induced by focused ion beam irradiation, (b) mechanism of enhanced light absorption due to multiple reflections through nanoripples and (3) experimentally measured light absorption from nanorippled germanium and bare germanium surface. (Reference: B. Kamaliya, R. Mote, M. Aslam, and J. Fu, APL Materials 6, 036106 (2018); doi: 10.1063/1.5021735).

The Academy is a collaboration between India and Australia that endeavours to strengthen scientific relationships between the two countries. Graduate research scholars like Bhavesh study for a dually-badged PhD from both IIT Bombay and Monash University, spending time at both institutions to enrich their research experience.

Prof Murali Sastry, CEO of the IITB-Monash Research Academy, and a reputed nanomaterial scientist, is excited. “The Academy is an opportunity for industry in Australia and India, as well as for IIT Bombay and Monash University, to train the next generation of rich talent in India. It has the potential to be a significant research institution. Talent from the Academy should become much sought after around the globe. This project could open new avenues on controlling nanoripples orientation and high-efficiency germanium-based photovoltaic applications.”

Indeed. We hope Bhavesh’s work will cause significant ripples — both literal and metaphorical.

Research scholar: Bhaveshkumar Kamaliya, IITB-Monash Research Academy
Project title: Study of Ion Beam Interaction with Materials and Nanostructure Fabrication
Supervisors: Prof Mohammed Aslam, Prof Rakesh G. Mote and Prof Jing Fu
Contact details: rakesh.mote@iitb.ac.in, bkamaliya@gmail.com

 

The above story was written by Mr Krishna Warrier based on inputs from the research student, his supervisors, and IITB-Monash Research Academy. Copyright IITB-Monash Research Academy.

Rediscovering colonial Bengal’s Muslim women writers


Muslim women writers in Bengali were reasonably prolific in colonial Bengal. However, contemporary readers of Bengali literature are unaware of their work in both fiction and non-fiction. How is it that the writing of an entire demographic has failed to become institutionalised in the widely-researched field of Bangla sahityer itihas or Bengali literary history?

This is the primary question that drives my PhD programme at the IITB-Monash Research Academy. As a corollary, I also ask how we may disinherit the priorities that created these exclusions, and suggest productive paradigms through which colonial Bengal’s Muslim women writers can be read in the twenty-first century.

To begin with, we will need to go back in time a little.

The Bengali literary canon revolves largely around the work of Hindu male writers. Yes, Muslim male writers find mention in certain titles of Bengali literary history by male Muslim historians, but the only Bengali Muslim woman writer whose work has been recognised to some extent is Rokeya Sakhawat Hossain.

This is not to say that Hindu and Brahmo women writers are institutionalised to any recognizable extent within the field of Bangla sahityer itihas either. However, the work of such women writers has been brought to the forefront by a dedicated group of feminist literary scholars working within a field that can be described as early Bengali women’s writing. These scholars have mined the writing of Hindu and Brahmo women writers from colonial Bengal to examine the ways in which Bengali women’s subject hood was produced within the anti-colonial nationalist narrative.

The work of the Muslim women writers that I work on do not fit into these existing paradigms of scholarship. I, therefore, work at the intersection of Bangla sahityer itihas and early Bengali women’s writing to examine how canons are formed and how canonical exclusion operates.

Some of the questions that have dogged me for long are:

– Who is to say what is ‘good’ literature?
– Who is heard when they speak along these lines?
– Who are the gatekeepers of the Bengali literary sphere and how do they operate?

My work focuses on the specific case of colonial Bengal’s Muslim women writers to answer questions that are fundamental to the field of literary study in any language.

Shamsunnahar Mahmud

Rokeya Sakhawat Hossain

 

My research relies on two key methodical aspects among others—archival research and translation. During the summer of 2017, I discovered the work of the Muslim women writers I have chosen to focus on in five libraries in and around Kolkata. More work by such women writers exist in libraries in Dhaka. However, these works are not yet catalogued under a label such as ‘colonial Bengali Muslim women’s writing.’ So my work in the archives will help to carve out such a category and will create a repository of works fitting such a description. The work of future researchers can further enrich this inaugural repository.

All my primary material is in Bengali. This consists of eight texts ranging between the length of 60 and 400 pages. I have translated all this material into English and will be publishing some of them soon. As a result, this material will be made available to a much larger reading public than such work has commanded ever before. Hopefully, English-language translations of these works will also generate more research interest in the field of Bengali Muslim women’s writing.

Literary canons are built through deliberate exclusion of the writing of people on the periphery. Canon-making is neither unconscious, nor neutral. The onus is on readers to recognize this, learn about the systems of representation and circulation that its biases and omissions indicate, and remedy it as best they can.
Feminists and representatives of religious, caste-based, racial and sexual minorities have, in the last few decades, called for revision of literary canons to include previously undiscovered, but prolific and insightful, writers. However, as a prerequisite to this task, it is necessary to map the exclusionary gestures through which such canons operate and to question whether it would be better to expand canons, revise them, or abjure the idea of canons altogether. My work will hopefully go some way in answering such questions.
As graduate research scholars of the IITB-Monash Research Academy, we study for a dually-badged PhD from IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. The Academy is a collaboration between India and Australia that endeavours to strengthen academic relationships between the two countries.

Research scholar: Sreejata Paul, IITB-Monash Research Academy

Project title: Gender and public sphere

Supervisors: Dr Paulomi Chakraborty and Dr Mridula Nath Chakraborty

Contact details: sreejatapaul@gmail.com

The above story was written by Sreejata Paul. Copyright IITB-Monash Research Academy.

How internal friction affects polymer dynamics


Imagine that you are waiting underneath an umbrella at an uncovered bus-stop on a stormy, rainy evening. As the bus rolls into position, you try to fold the umbrella before boarding. The wind and rain make it difficult to do so, and you can feel the driver staring at you impatiently. As the wind slows down a jot, you realize that your umbrella is rusty, making the task of folding it even more difficult. You finally manage to fold the umbrella, amid the increasing number of cold stares from the bus, and slump gratefully in the seat closest to the entrance.

Such a resistance to folding is experienced by all protein molecules which have to fold correctly into their correct 3-D shape, starting from their respective 1-D structures.

When protein molecules are synthesized by RNA, they are simply a linear sequence of amino acid building blocks. In order to perform the function for which they were synthesized, the protein molecule needs to ‘fold’ or reorient itself into the requisite three-dimensional shape. An excellent discussion on the structure of proteins can be found here.

Proteins not only experience an external resistance to folding from the solvent they are present in (water, mostly), they also experience an ‘internal’ resistance to folding (like the rust in the umbrella). This ‘internal friction’ in polymer molecules is a key focus of my PhD research. [Protein folding, taken in its entirety, is a much larger question, and I do not work on the protein-folding problem.] The biological consequences of internal friction, especially in connection with the protein-folding problem, has begun to receive a lot of academic attention recently.

Now, proteins are just a type of polymer: long chain molecules that are composed of several repeating units. At a fine enough level of detail, the chemistry of these building blocks will begin to matter: there is a significant difference between the bond that joins a carbon atom to a hydrogen atom, and a nitrogen-hydrogen bond.

My research training involves the use of statistical mechanical principles, and a tool called Brownian Dynamics (BD) simulations, wherein polymer molecules are modeled as beads connected by springs, without going into the finer chemical details of the molecule. Such a calculated and deliberate neglect of detail prevents us from answering certain questions about the polymer molecules (“what should be the shape of the drug molecule that binds specifically to site #27 of the molecule?”) but offers payback in terms of insight about specific universal properties of polymers. These universal properties could be biophysical or rheological in nature.

Total shear stress, τp,yx, as a function of the shear rate for various values of ϵ and h*. Error bars are smaller than the symbol size.

                                               Source: R. Kailasham, R. Chakrabarti, and J. R. Prakash, J. Chem. Phys. 149, 094903 (2018)

In a recent publication, we study the rheological response of a dilute polymer solution with internal friction.

As graduate research scholars of the IITB-Monash Research Academy, we study for a dually-badged PhD from IIT Bombay and Monash University, spending time at both institutions to enrich our research experience. The Academy is a collaboration between India and Australia that endeavours to strengthen relationships between the two countries. According to its CEO, Prof Murali Sastry, “The IITB-Monash Research Academy was conceived as a unique model for how two leading, globally focussed academic organisations can come together in the spirit of collaboration to deliver solutions and outcomes to grand challenge research questions facing industry and society.”

He was spot on. This project will firstly enhance our ability to understand mechanisms in biological systems such as the cellular environment. It will also contribute to enabling aspects of the Strategic Research Priority ‘Living in a changing environment’ and understanding the fundamental molecular aspects of Biodiversity—all of which is essential for harnessing biomolecular processes whether in health care or biotechnology.

Research scholar: Kailasham Ramalingam, IITB-Monash Research Academy

Project title: Theoretical and computational study of polymers in the semi-dilute regime in presence of shear flow, crowding and internal viscosity

Supervisors: Dr. Rajarshi Chakrabarti and Dr. Ravi Jagadeeshan

Contact details:kailasham29@gmail.com

 This story was written by Kailasham Ramalingam. Copyright IITB-Monash Research Academy.