Project Title:
Modelling Energy Transitions in India and Australia

Project Number
IMURA0751

Monash Main Supervisor
Name: ARIEL LIEBMAN
Email: ariel.liebman@monash.edu

Monash Co-supervisor(s)
Name: Roger Dargaville
Email: roger.dargaville@monash.edu

Monash Head of Dept/Centre
Name: Alan Dorin
Email: alan.dorin@monash.edu

Monash Department:
Faculty of Information Technology

Monash ADRT
Name: Sue McKemmish
Email: sue.mckemmish@monash.edu

IITB Main Supervisor
Name: RANGAN BANERJEE
Email: rangan@iitb.ac.in

IITB Co-supervisor(s)
Name: TBD
Email: TBD

IITB Head of Dept
Name: RANGAN BANERJEE
Email: head.ese@iitb.ac.in

IITB Department:
ENERGY SCIENCE AND ENGINEERING

Research Clusters:

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Material Science/Engineering (including Nano, Metallurgy)</td>
<td></td>
</tr>
<tr>
<td>2. Energy, Green Chem, Chemistry, Catalysis, Reaction Eng</td>
<td></td>
</tr>
<tr>
<td>3. CSE, IT, Optimisation, Data, Sensors, Systems, Signal Processing, Control</td>
<td></td>
</tr>
<tr>
<td>4. Earth Sciences and Civil Engineering (Geo, Water, Climate)</td>
<td></td>
</tr>
<tr>
<td>5. Bio, Stem Cells, Bio Chem, Pharma, Food</td>
<td></td>
</tr>
<tr>
<td>6. Semi-Conductors, Optics, Photonics, Networks, Telecom, Power Eng</td>
<td></td>
</tr>
<tr>
<td>7. HSS, Design, Management</td>
<td></td>
</tr>
</tbody>
</table>

Research Themes:

<table>
<thead>
<tr>
<th>Theme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Advanced computational engineering, simulation and manufacture</td>
<td></td>
</tr>
<tr>
<td>2. Infrastructure Engineering</td>
<td></td>
</tr>
<tr>
<td>3. Clean Energy</td>
<td></td>
</tr>
<tr>
<td>4. Water</td>
<td></td>
</tr>
<tr>
<td>5. Nanotechnology</td>
<td></td>
</tr>
<tr>
<td>6. Biotechnology and Stem Cell Research</td>
<td></td>
</tr>
<tr>
<td>7. Humanities and social sciences</td>
<td></td>
</tr>
<tr>
<td>8. Design</td>
<td></td>
</tr>
</tbody>
</table>
The energy sector in India and Australia are undergoing a transition. The electricity sector in India (and Australia) is predominantly based on coal. The Indian government has a plan to ramp up renewable installed capacity to 175 GW by 2022. By 2030 the nationally determined contribution commits to having 40% of installed capacity by non-fossil. The Indian government is also planning a significant thrust on electric vehicles. There are several issues related to the rapid growth of renewables (Solar and Wind) and electric vehicles. In this project it is planned to develop a large scale modelling framework to assess the impacts of possible transitions on the power system, cost of electricity supply and the economy.

The objective will be to create a transparent framework to assess possible rates of growth of electric vehicles, solar and wind. This could involve use of existing modelling tools like TIMES-MARKAL or PLEXOS and linking with large scale economy models (Input_output models) or the development of dedicated new tools. The goal will be to develop an appropriate modelling framework that can address questions of stranded assets, impact or economy as well as the operating and control strategies. The model would be developed for the Indian context. An analysis of the Australian context would also be attempted using this framework. The generic modelling framework developed would be useful to answer what if questions for policy makers. This would also help define feasible rates of growth and be useful for other countries facing similar transitions.

Project aims

The objective will be to create a transparent framework to assess possible rates of growth of electric vehicles, solar and wind. This could involve use of existing modelling tools like TIMES-MARKAL or PLEXOS and linking with large scale economy models (Input_output models) or the development of dedicated new tools. The goal will be to develop an appropriate modelling framework that can address questions of stranded assets, impact or economy as well as the operating and control strategies. The model would be developed for the Indian context. An analysis of the Australian context would also be attempted using this framework. The generic modelling framework developed would be useful to answer what if questions for policy makers. This would also help define feasible rates of growth and be useful for other countries facing similar transitions.
Expected outcomes
Highlight the expected outcomes of the project
Development of an appropriate modelling framework to assess impacts of transitions in the energy sector
Use of the framework to provide insights and policy recommendations for India and Australia

How will the project address the Goals of the above Themes?
The project will support the identified themes by delivering decision support frameworks for deployment of clean energy infrastructure

Capabilities and Degrees Required
List the ideal set of capabilities that a student should have for this project. Feel free to be as specific or as general as you like. These capabilities will be input into the online application form and students who opt for this project will be required to show that they can demonstrate these capabilities.

Electrical, Mechanical or Chemical Engineering with experience in the energy sector and an interest in modelling and optimisation

Potential Collaborators
Please visit the IITB website www.iitb.ac.in OR Monash Website www.monash.edu to highlight some potential collaborators that would be best suited for the area of research you are intending to float.

Select up to (4) keywords from the Academy’s approved keyword list (available at http://www.iitbmonash.org/becoming-a-research-supervisor/) relating to this project to make it easier for the students to apply.

Energy, Modelling and Simulation, Systems Analysis and Control