Project Title: Lasers based on two dimensional semiconductors

Project Number: IMURA0865

Monash Main Supervisor
(Name, Email Id, Phone)
Prof. Sudha Mokkapati
Sudha.Mokkapati@monash.edu

Monash Co-supervisor(s)
(Name, Email Id, Phone)

Monash Head of Dept/Centre (Name, Email)
Prof. Neil Cameron
Neil.Cameron@monash.edu

Monash Department: Department of Materials Science and Engineering

Monash ADGR (Name, Email)

IITB Main Supervisor
(Name, Email Id, Phone)
Prof. Anshuman Kumar
anshuman.kumar@iitb.ac.in

IITB Co-supervisor(s)
(Name, Email Id, Phone)

IITB Head of Dept (Name, Email)
Prof. K. G. Suresh

IITB Department: Physics

Research Clusters:

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Research Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material Science/Engineering (including Nano, Metallurgy)</td>
</tr>
<tr>
<td>2</td>
<td>Energy, Green Chem, Chemistry, Catalysis, Reaction Eng</td>
</tr>
<tr>
<td>3</td>
<td>Math, CFD, Modelling, Manufacturing</td>
</tr>
<tr>
<td>4</td>
<td>CSE, IT, Optimisation, Data, Sensors, Systems, Signal Processing, Control</td>
</tr>
<tr>
<td>5</td>
<td>Earth Sciences and Civil Engineering (Geo, Water, Climate)</td>
</tr>
<tr>
<td>6</td>
<td>Bio, Stem Cells, Bio Chem, Pharma, Food</td>
</tr>
<tr>
<td>7</td>
<td>Semi- Conductors, Optics, Photonics, Networks, Telecomm, Power Eng</td>
</tr>
<tr>
<td>8</td>
<td>HSS, Design, Management</td>
</tr>
</tbody>
</table>

Research Themes:

<table>
<thead>
<tr>
<th>Theme</th>
<th>Research Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced computational engineering, simulation and manufacture</td>
</tr>
<tr>
<td>2</td>
<td>Infrastructure Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Clean Energy</td>
</tr>
<tr>
<td>4</td>
<td>Water</td>
</tr>
<tr>
<td>5</td>
<td>Nanotechnology</td>
</tr>
<tr>
<td>6</td>
<td>Biotechnology and Stem Cell Research</td>
</tr>
<tr>
<td>7</td>
<td>Humanities and social sciences</td>
</tr>
<tr>
<td>8</td>
<td>Design</td>
</tr>
</tbody>
</table>
The research problem

Define the problem
Nanoscale lasers are an important components for future computers based on integrated nanophotonic circuits. Most current semiconductor lasers consume about a pico joule of energy per bit; which is about a hundred times larger than required. This can be accomplished by miniaturizing the laser to nanoscale dimensions. This project focuses on fundamental research to develop such nanoscale light sources with high energy efficiency. This research will address the bottleneck of energy efficiency, particularly in the communication related domain where energy consumption is increasing at a rate faster than that of energy generation.

Two dimensional semiconductors have emerged as promising materials for the development of chipscale optical sources, owing to their large exciton binding energy and electrostatic tunability of their emission properties. These materials have also been shown to one of the best gain materials available for lasing. In this project, we will develop innovative approaches from a fundamental physical and engineering standpoints to develop efficient nanoscale laser sources by incorporating these 2D materials with optical resonators.

Project aims

Define the aims of the project
The project would involve four parts:

1) **Fabrication photonic chips:**
 Top down approach: EBL here at IIT Bombay & Melbourne Center for Nanotechnology

2) **2D Materials / heterostructures**
 Via mechanical exfoliation of bulk crystal and CVD here at IIT Bombay

3) **Optical characterization**
 The student will be involved in the development of a chip characterization setup being built here at IIT Bombay which will be used for the microlaser characterization. Part of the material characterization will be performed at Monash University.

4) **Simulation and theory**
 FDTD (Lumerical) and FEM simulations (COMSOL) here at IIT Bombay

 The main objectives of this proposal are:
 1) Design and fabricate micro and nanoscale mie resonator cavities
 2) Integrate 2D semiconductors (TMD) reproducibly with these nanocavities
 3) Develop a new technique for coupling out the emission from the TMD/cavity system
 4) Characterize the resulting emission as a function of various parameters to optimize a low power high efficiency nanolaser source at the visible wavelength.

Expected outcomes

Highlight the expected outcomes of the project

1) Publications in high impact journals: Since this work has many elements of novelty involved, it is possible to publish the results in prestigious journals as well as conferences
2) Develop a fundamental understanding of the channeling of emission from 2D semiconductors into a nanocavity optical mode.
3) Develop technical expertise in nano-optical characterization and functionalization of photonic integrated circuits
Possible identification of other relevant research problems which can be solved by the synergy of the capabilities of IITB and Monash University.

How will the project address the Goals of the above Themes?

Describe how the project will address the goals of one or more of the 6 Themes listed above.

Nanotechnology:
The project will involve building of optical devices using 2D semiconductors, whose thickness is below a nanometer. We will integrate these nanomaterials with cavities of nanoscale dimension, to build optical sources which will have direct relevance to future chipscale information processing and light storage technologies.

Capabilities and Degrees Required
List the ideal set of capabilities that a student should have for this project. Feel free to be as specific or as general as you like. These capabilities will be input into the online application form and students who opt for this project will be required to show that they can demonstrate these capabilities.

Capabilities: Through project or coursework
1) Basic solid state Physics theory (proficient)
2) Optics or basic electrodynamics - theory and experiment (medium)
3) Micro and nanofabrication (some exposure)

Qualifying degrees:
1) MSc. Physics
2) B.E./B.Tech./M.Tech. in Engineering Physics, Chemistry, Electrical Engineering or Materials Science

Strong plus:
1) Some cleanroom experience
2) Exposure to basic optical characterization (microscope / Raman / PL, etc)
3) Exposure to Data analysis in MATLAB or Python

Potential Collaborators
Please visit the IITB website www.iitb.ac.in OR Monash Website www.monash.edu to highlight some potential collaborators that would be best suited for the area of research you are intending to float.

Select up to (4) keywords from the Academy’s approved keyword list ([available at http://www.iitbmonash.org/becoming-a-research-supervisor/](http://www.iitbmonash.org/becoming-a-research-supervisor/)) relating to this project to make it easier for the students to apply.

Novel Functional Materials, Photonics, Nanotechnology